
Efficient privacy-preserving collaborative filtering based on the

weighted Slope One predictor∗

Anirban Basu

Graduate School of Engineering, Tokai University,

2-3-23 Takanawa, Minato-ku, Tokyo 108-8619, Japan

abasu@cs.dm.u-tokai.ac.jp

Jaideep Vaidya

MSIS Department, Rutgers, The State University of New Jersey

1, Washington Park, Newark, New Jersey, 07102-1897, USA

jsvaidya@business.rutgers.edu

Hiroaki Kikuchi

Graduate School of Engineering, Tokai University,

1117, Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan

kikn@tokai.ac.jp

Abstract

Rating-based collaborative filtering (CF) predicts the rating that a user will give to an item, de-

rived from the ratings of other items given by other users. Such CF schemes utilise either user neigh-

bourhoods (i.e. user-based CF) or item neighbourhoods (i.e. item-based CF). Lemire and MacLachlan

[19] proposed three related schemes for an item-based CF with predictors of the form f (x) = x+b,

hence the name “slope one”. Slope One predictors have been shown to be accurate on large datasets.

They also have several other desirable properties such as being updatable on the fly, efficient to com-

pute, and work even with sparse input. In this paper, we present a privacy-preserving item-based

CF scheme through the use of an additively homomorphic public-key cryptosystem on the weighted

Slope One predictor; and show its applicability on both horizontal and vertical partitions, and in-

clude a discussion on arbitrary partitions as well. We present an evaluation of our proposed scheme

in terms of communication and computation complexity, performance of cryptographic primitives

and performance of a single-partition, single machine implementation in 64-bit Java.

1 Introduction

The information available over the World Wide Web (e.g. from social networks, e-commerce catalogs,

amongst others) has reached insurmountable levels over the last two decades, and users are thus accosted

with the problem of information overload [30]. Recently, more web-based services offered through cloud

computing have only exacerbated the problem. User-tailored recommendation systems have been seen as

the rescue that are expected to help users weed out the unnecessary information from the essential ones.

Most automated recommendation systems are generally classified according to two main techniques:

profile-based and collaborative filtering (CF). The former involves relevant details about users (i.e. infor-

mation that relate to their tastes), which are collected in order to match the items to be recommended to

them. In contrast, prediction through CF results from the recorded preferences of the community. While

profile-based recommendation for a user with rich profile information can be thorough, CF is fairly ac-

curate, without the need for the user’s preferential history. CF has, thus, positioned itself as one of the

predominant means of generating recommendations.

∗This paper is an extended journal version of the workshop paper [4] published in the proceedings of TP-DIS 2011, co-

located with the IFIPTM 2011 in København, Denmark.

1

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Based on filtering techniques, CF is broadly classified into: memory-based or neighbourhood-based

and model-based. In memory-based approaches, recommendations are developed from user or item

neighbourhoods, based on some sort of proximity (or deviation) measures between opinions of the users,

or the ratings of the items, e.g. cosine similarity, Euclidean distance and various statistical correlation

coefficients. Memory-based CF can also be distinguished into: user-based and item-based. In the former,

CF is performed using neighbourhood between users computed from the ratings provided by the different

users. The latter is item-based where prediction is obtained using item neighbourhoods, i.e. proximity

(or deviation) of ratings between various items.

Model-based approaches, in contrast, are sometimes more applicable on large datasets for which

some memory-based approaches do not scale well. In model-based approaches, the original user-item

ratings dataset is used to train a compact model, which is then used for prediction. The model is devel-

oped by methods borrowed from artificial intelligence, such as Bayesian classification, latent classes and

neural networks; or, from linear algebra, e.g. singular value decomposition (SVD), latent semantic in-

dexing (LSI) and principal component analysis (PCA). Model-based algorithms are usually fast to query

but relatively slow to update.

Collaborative filtering based approaches attain better accuracy with the availability of more data.

Sometimes, it may be possible to perform cross domain (e.g. between two sites) recommendations, if the

corresponding data can be utilised to relate contextual information (e.g. a person with a strong interest in

horror movies may also rate certain Halloween products highly). However, sharing user-item preferential

data for use in CF poses significant privacy and security challenges. Competing organisations, e.g.

Netflix and Blockbuster may not wish to share specific user information, even though both may benefit

from such sharing. Users themselves might not want detailed information about their ratings and buying

habits known to any single organisation. To overcome this, there has been active recent work in privacy-

preserving collaborative filtering (PPCF) that enable CF without leaking private information. However,

in CF, achieving accuracy and preserving privacy are orthogonal problems.

The two main directions of research in privacy-preserving collaborative filtering are: encryption-

based and randomisation-based. In encryption-based techniques, prior to sharing individual user-item

ratings data are encrypted using cryptosystems that support homomorphic properties. Therefore, third

party collaborative filtering servers can identify a user but cannot see their data. In randomisation-based

privacy preserving techniques, the ratings data is randomised either through random data swapping or

data perturbation or anonymisation. In this technique, the third party CF servers can sometimes identify

the user and read the data but the data is not the real data due to perturbation; in other cases, the third party

is unable to accurately link the user from the available data (e.g. in k-anonymity [31], l-diversity [22]).

We believe that the existing schemes are either impractical from the efficiency standpoint (especially,

from the perspective of updating) or from the security standpoint. To improve on this, in this paper,

we propose a privacy-preserving (with encryption strategy) item-based collaborative filtering scheme

extended from the well-known weighted Slope One predictor [19].

1.1 Our contribution

The contributions of this paper can be summarised as follows: (i) this is an extension of our earlier

work [4], in which the previously proposed privacy-preserving collaborative filtering scheme using the

weighted Slope One predictor is extended to arbitrary dataset partitions; (ii) our proposal retains the high

level of accuracy of Slope One predictors while also providing a high level of privacy – since we are

using encryption and security primitives, we can prove that our protocols do not leak any information

other than the result; (iii) our proposal has relatively low computation and communication complexity.

(iv) this extended paper also contains implementation results using a single machine, and single dataset

partition.

2

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

The rest of the paper is organised as follows: we briefly present background and overview of prelim-

inaries including the key related work in this area in §2. We summarise our problem statements in §3. In

§4, we propose a PPCF scheme based on the weighted Slope One predictor and apply it on horizontal and

vertical partitions. In §5, we present evaluations and implementation results followed by a conclusion

and promising future directions in §6.

2 Background and Preliminaries

2.1 The weighted Slope One predictor

Lemire and MacLachlan proposed [19] a CF scheme based on predictors of the form f (x) = x+b, hence

the name “slope one”. However, to our knowledge, no one has applied privacy preserving techniques on

slope one based CF. Before delving further into PPCF, we present a brief overview of the Slope One

predictors. Conforming with realistic datasets, in the following example, we will use the discrete integral

range of ratings [1−5] with “0” or “-” or “?” representing absence of ratings. Table 2.1 shows a simple

user-item ratings matrix of users rating airlines companies.

The simplest Slope One prediction of rating for any user for an item i1 given the user’s rating for

i2 (i.e. ri2), is of the form ri1 = δi1,i2 + ri2 where δi1,i2 is the average deviation of the ratings of item i1
from those of item i2 while ri2 is the rating the user has given to item i2. The average deviation of ratings

between a pair of items is calculated using only those ratings where both items have been rated by the

same user.

Table 2.1: A simple three users, three items rating matrix.

British Airways Emirates Cathay Pacific

Kikuchi Hiroaki 2 4 4

Jaideep Vaidya 2 5 4

Basu Anirban 1 ? 4

Using the unweighted Slope One predictor, we derive the missing rating as:

? =
((4−2)+(5−2)

2
+1)+((4−4)+(5−4)

2
+4)

2
= 4.0

The unweighted scheme estimates a missing rating using the average deviation of ratings between

pairs of items with respect to their cardinalities. Slope One CF can be evaluated in two stages: pre-

computation and prediction of ratings. In the pre-computation stage, the average deviations of ratings

from item a to item b is given as:

δa,b =
∆a,b

φa,b
=

∑i δi,a,b

φa,b
=

∑i(ri,a− ri,b)

φa,b
(2.1)

where φa,b is the count of the users who have rated both items while δi,a,b = ri,a− ri,b is the deviation of

the rating of item a from that of item b both given by user i.

In the prediction stage, the rating for user u and item x using the weighted Slope One is predicted as:

ru,x =
∑a|a 6=x(δx,a + ru,a)φx,a

∑a|a 6=x φx,a
=

∑a|a 6=x(∆x,a + ru,aφx,a)

∑a|a 6=x φx,a
. (2.2)

3

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Thus, we can precompute the difference (or deviation) matrix1 ∆ = {∆a,b} and the cardinality matrix

φ = {φa,b}. Note that for space efficiency, we only need to calculate the upper triangulars of those matri-

ces because the lower triangulars can be easily derived from the upper ones, and the leading diagonals are

irrelevant. The weighted Slope One has been found to be efficient, e.g. achieving a mean absolute error

(MAE) rate close to 0.7 on the MovieLens 100K dataset2, which is better than CF schemes using cosine

similarity or the Singular Value Decomposition, using a reference implementation in Apache Mahout3.

2.2 Related work

In recent years, privacy has attracted a lot of attention. There has been extensive work in privacy-

preserving data mining, most of which is either based on randomization or on cryptographic techniques.

In the randomization approach[3], “noise” is added to the data before the data analysis process. Tech-

niques are then used to remove the noise from the data mining results. Several privacy-preserving

data mining algorithms have since been proposed [2, 12, 29] using this approach. However, since the

original data is still accessible (even though it is perturbed), estimates of the original values can be

obtained using noise removal techniques, giving rise to debate about the security properties of such

algorithms![18, 16]. The alternative approach to protecting privacy of distributed sources using cryp-

tographic techniques was first applied in the area of data mining for the construction of decision trees

by Lindell and Pinkas [20, 21]. This work falls under the framework of secure multiparty computa-

tion [32, 13], achieving “perfect” privacy, i.e. nothing is learned that could not be deduced from one’s

own data and the resulting tree. The key insight was to trade off computation and communication cost

for accuracy, improving efficiency over the generic secure multiparty computation method. However,

the proposed solution is still too inefficient for practical usage. Therefore, much of the following work

has concentrated on creating efficient techniques for specific problems. A general survey of privacy

preserving data mining in presented in [1].

There are a number of existing works on privacy-preserving collaborative filtering (PPCF). One of

the earliest such efforts is due to [7] which uses a partial Singular Value Decomposition (SVD) model and

homomorphic encryption to devise a multi-party PPCF scheme. Canny [8] also proposes a new solution

based on a probabilistic factor analysis model, that can handle missing data, and provides privacy through

a peer-to-peer protocol. Polat and Du have also investigated this problem from several perspectives. In

[24] a randomised perturbation technique is proposed to protect individual privacy while still producing

accurate recommendations results; [25] presents a privacy-preserving protocol for collaborative filtering

over vertically partitioned data, while [26] presents a scheme for providing top-N recommendations

over horizontally partitioned data. Also, [27] presents a randomisation based SVD approach, while [28]

enables recommendations via item-based algorithms using randomized response techniques. Berkovsky

et. al. [5] propose a decentralized method that stores most of the data only on the client side and transfers

very limited data over the network to mitigate the privacy concerns of collaborative filtering. In [6], they

present a decentralized distributed storage of user data combined with data modification techniques to

mitigate privacy issues. Cissée and Albayrak [9] develop a method for privacy-preserving recommender

systems based on multi-agent technology which enables applications to generate recommendations via

various filtering techniques while preserving the privacy of all participants. In [17], the authors propose

a naı̈ve Bayesian classifier based CF over a P2P topology where the users protect the privacy of their data

using masking, which is comparable to randomisation. Another homomorphic encryption based SVD

scheme has been proposed in [15] but the authors also describe that their scheme does not scale well for

realistic datasets; Gong et. al.[14] presents a new collaborative filtering technique based on randomized

1Note that we do not need to compute average differences according to equation 2.2.
2http://www.grouplens.org/node/73
3http://mahout.apache.org/

4

http://www.grouplens.org/node/73
http://mahout.apache.org/

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

perturbation and secure multiparty computation. However, it is not as efficient as our technique, and

also does not guarantee completely accurate results. Our work follows the cryptographic approach, is

efficient, and works for all types of data partitions.

2.3 An additively homomorphic public-key cryptosystem – Paillier

Paillier introduced a public-key cryptosystem [23] with additively homomorphic properties. Denoting

encryption and decryption functions as E () and D() respectively, the encryption of the sum of two

plaintext messages m1 and m2 is the modular product of their individual ciphertexts:

E (m1 +m2) = E (m1) ·E (m2) (2.3)

and, the encryption of the product of one plaintext messages m1 and a plaintext integer multiplicand π is

the modular exponentiation of the ciphertext of m1 with π as the exponent:

E (m1 ·π) = E (m1)
π . (2.4)

Paillier cryptosystem in described in three steps: key generation (algorithm 2.1), encryption (algo-

rithm 2.2) and decryption (algorithm 2.3).

Algorithm 2.1 Paillier cryptosystem key generation.

1: Generate two large prime numbers p and q, each with half the specified modulus bit length for the

cryptosystem.

Ensure: gcd(pq,(p−1)(q−1)) = 1 and p 6= q.

2: Modulus n = pq.

3: Pre-compute n2.

4: Compute λ = lcm(p−1,q−1) = (p−1)(q−1)
gcd(p−1,q−1) .

5: g← (1+n). {Optimised here but originally: select random g ∈ Z∗
n2 such that n divides the order of

g.}
Ensure: gcd(L(gλ mod n2),n) = 1 where L(u) = u−1

n
. {Optimisation: gλ mod n2 = (1 + nλ)

mod n2.}
6: Pre-compute the modular multiplicative inverse µ = L(gλ mod n2)−1 mod n.

7: return Public key: (n,n2,g) and Private key: (λ ,µ).

Algorithm 2.2 Paillier encryption algorithm.

Require: Plaintext m ∈ Zn.

1: Choose random r ∈ Z∗n .

2: return Ciphertext c← (1+mn) rn mod n2. {Optimised here but originally: c← gmrn mod n2.}

Algorithm 2.3 Paillier decryption algorithm.

Require: Ciphertext c ∈ Z∗
n2 .

1: return Plaintext m← L(cλ mod n2)µ mod n.

5

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

2.3.1 Generalised threshold variant – the Damgärd-Jurik cryptosystem

The Damgärd-Jurik cryptosystem [11] proposes a generalisation and a threshold variant of the Paillier

cryptosystem using modulo ns+1 computations for any natural number s ≥ 1 (with s = 1 for Paillier).

It allows for private key sharing between k parties. The ciphertext can be decrypted only after com-

bining all k partial decryptions. In terms of performance, it is slightly slower than Paillier. Security

of this cryptosystem is the same as that of the Paillier cryptosystem based on the decisional composite

residuosity assumption. Note that in our proposed scheme, we assume a semi-honest model for the par-

ticipating sites. Hence, we do not require Damgärd-Jurik zero-knowledge proofs (ZKPs) for the various

cryptographic operations from the participating sites.

3 Problem statement

We first define our problem statement in generic terms, and then make it more specific.

[Privacy-Preserving Slope One Predictors] Given a dataset consisting of m users u1, . . . ,um and n

items it1, . . . , itn distributed between a set of k sites, S0, . . . ,Sk−1 in some fashion, build the weighted

Slope One predictor for each item without leaking the privacy of the data owned by site Si to any other

site S j.

Depending on the situation at hand, the collaborative protocol to build the Slope One predictor might

result in all of the sites holding the predictor or only some master site holding it, which is still trusted to

see the raw data. While data may be arbitrarily partitioned between the sites, in general, it is much more

likely that the data is partitioned in a particular fashion in real life. Therefore, we discuss two specific

partitions – horizontal partitioning and vertical partitioning, and present a specific problem statement for

each case as well.

3.1 Horizontal Partitioning of Data

A perfect horizontal partition of a user-item ratings dataset is such that multiple sites (or organisations)

contain completely disjoint sets of users but the same set of items. In figure 3.1, a partition of a multiple

user, two-items dataset is shown where the data is present in three sites.

In this case, while each site can independently build the Slope One predictor for each item, the

predictors are likely to much more accurate when built over the entire data set.

[Privacy-Preserving Slope One Predictors for Horizontally Partitioned Data] Given a set of k sites,

S0, . . . ,Sk−1, where each site Si owns the data about mi users ui1, . . . ,uimi
, such that ∑i mi = m and all

sites collect information about the same n items it1, . . . , itn, build the weighted Slope One predictor for

each item without leaking the privacy of the data owned by site Si to any other site S j.

3.2 Vertical Partitioning of Data

A perfect vertical partition is one in which the multiple sites contain the same set of users but completely

disjoint sets of items. In figure 3.2, a partition of a multi-user multi-item dataset is shown where there

are three item sets across three sites.

In this case, while each party can build a Slope One predictor for its items based on the other items

it possesses, the global Slope One predictor built using all of the other items is likely to be significantly

more accurate. Therefore, the parties must collaboratively build the predictor.

[Privacy-Preserving Slope One Predictors for Vertically Partitioned Data] Given a set of k sites,

S0, . . . ,Sk−1, where each site Si owns the data about ni items iti1, . . . , itnmi
, such that ∑i ni = n and all

6

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Item a Item b

Organisation 1

 users

Organisation 2

 users

Organisation 3

 users

Figure 3.1: A visualisation of a horizontal partition.

Organisation 1 items

Item a Item b

Users
common to

all
organisations

Organisation 2 items

Item c Item d

Organisation 3

 items

Item fItem e

Figure 3.2: A visualisation of a vertical partition.

sites collect information about the same m users u1, . . . ,um, build the Slope One predictor for each item

without leaking the privacy of the data owned by site Si to any other site S j.

3.3 Arbitrary Partitioning of Data

As discussed above, in arbitrary partitioning neither the users nor the items are necessarily split in disjoint

partitions. Thus, any site may know an arbitrary set of ratings for an arbitrary set of users. However, the

only assumption is that the global set of user-rating pairs is both unique and complete – every user-rating

is collected by exactly one site (i.e., all ratings for all users are collected and are not duplicated). In

figure 3.3, a partition of a multi-user multi-item dataset is shown where both users and ratings are split

across three sites.

Note that in all of the above cases, since the Slope One predictor can be easily built (see equation 2.2)

given the deviation matrix and the cardinality matrix, we limit our attention to computing these two

matrices in a privacy-preserving fashion.

7

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Item a Item Item d Item e Item gItem fItem c

Areas within dotted lines represent organisations.

Figure 3.3: A visualisation of an arbitrary partition.

4 Privacy-preserving Slope One

Below, we show that prediction of a rating, given in equation 2.2, can be derived from encrypted devi-

ations and plaintext cardinalities. Encrypted deviations can be completely decrypted by combining the

partial decryptions sites by k sites using the Damgård-Jurik cryptosystem4.

∑
a|a 6=x

(∆x,a + ru,aφx,a) = D(∏
a|a 6=x

(E (∆x,a)(E (ru,a)
φx,a))) (4.1)

=⇒ ru,x =
D(∏a|a 6=x(E (∆x,a)(E (ru,a)

φx,a)))

∑a|a 6=x φx,a
. (4.2)

We now look at how to compute the deviation (∆) and cardinality (φ) matrices when the data is

distributed. Note that although local cardinalities at each site are encrypted, the global cardinalities

should be decrypted to fit into the prediction equation 4.2. Also, the prediction equation contains a

number of E (ru,a) values, which are provided encrypted in a query to obtain the prediction.

4.1 Horizontal Partition

If we denote the deviation matrix for all item pairs as ∆ and the cardinality matrix as φ , and denote

organisational sites as Si|i=0...k then site Si owns ∆Si and φSi respectively. An element in the deviation

matrix between items “a” and “b” is given as ∆Si

a,b owned by Si, if any. Since the user sets are completely

disjoint between the organisations, the following two equations can be easily inferred:

∆ = ∑
i

∆Si =⇒ any ∆a,b = D(∏
i

E (∆Si

a,b)) and (4.3)

φ = ∑
i

φSi =⇒ any φa,b = D(∏
i

E (φSi

a,b)). (4.4)

4In the Paillier and the Damgård-Jurik cryptosystems, encryption of a negative integer can be calculated by using its

modular additive inverse, i.e. E(−x) = E(n− x), so we can treat all x > n
2 to be negative.

8

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

4.1.1 Initial matrix aggregation

Each site independently calculates its own deviation and cardinality matrices ranging over all pairs of

items from the user set it has5. To aggregate the matrices, any site Si should start a k-cycle (k being

the number of collaborating sites) by sending its neighbour, Si+1, the upper triangulars of E (∆Si) and

E (φSi). Site Si+1 can then aggregate these with its own deviation and its own cardinality matrices by

homomorphic addition and pass the results on to its neighbour Si+2. Once the cycle finishes, i.e. the

encrypted matrices reach Si in a cycle, it can then forward the updated final encrypted matrices in one

more k-cycle so that its neighbours can all maintain the same up-to-date matrix. This process is described

in algorithm 4.1.

Algorithm 4.1 Initial matrix aggregation in the horizontal partitioning scheme.

Require: Each site Si independently calculates its own deviation matrix ∆Si and its own cardinality

matrix φSi .

1: for each site Si in the k sites do

2: Si sends E (∆Si) and E (φSi) to its neighbour Si+1.

3: Si+1 computes homomorphic addition: E (∆Si)E (∆Si+1) and E (φSi)E (φSi+1); then sends this to

its neighbour Si+2 until all sites are reached in this k-cycle.

4: end for

5: {In k such forwarding operations, the complete encrypted matrices E (∆) = ∏i E (∆Si) and E (φ) =

∏i E (φSi) will reach Si.}
6: for each site Si in the k sites do

7: Si forwards E (∆) and E (φ) to Si+1 until all sites are reached.

8: end for

9: {In this cycle, every Si gets E (∆) and E (φ), where E (∆) = E (∑i ∆Si) and E (φ) = E (∑i φSi).}

4.1.2 Matrix update

Any changes in individual ratings will change the individual pairwise deviations (and also cardinalities

if new users are added or old users are removed), which will trigger an update in a cycle akin to the

matrix aggregation process. If ∆a,b is changed to ∆
′

a,b at site Si then it can pass it on encrypted to its

neighbour Si+1 in a k-cycle (k being the number of collaborating servers), which in turn can pass it on to

its neighbour, Si+2 so that each site can update its E (∆a,b) to E (∆
′

a,b). The cardinality matrix elements

can be updated in the same way. This update process is described in algorithm 4.2.

Algorithm 4.2 Matrix update in the horizontal partitioning scheme.

Require: ∆a,b is changed to ∆
′

a,b at site Si because of change of ratings for item “a” or item “b” or

additional or removal of users at site Si. Alternatively, φ may have changed to φ
′
at site Si.

1: for each site Si in the k sites do

2: If the update is required, Si forwards E (∆
′

a,b) to Si+1 until all sites are reached.

3: If the update is required, Si forwards E (φ
′

a,b) to Si+1 until all sites are reached.

4: end for

We will have to decrypt the global cardinality matrix φ = D(∏i E (φSi)) = ∑i φSi before we can

apply the prediction equation 4.2 but we can also use the secure sum protocol [10] to add up the local

5Recall the need to calculate only upper triangulars.

9

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

cardinality, i.e. φSi matrices without encrypting, which will reduce the computation cost but increase the

communication cost.

4.2 Vertical Partition

Vertical partitions are not trivial as this involves expansions of the individual servers’ deviation and

cardinality matrices. This will involve sharing of ratings for each pair of items in which one item (in

the pair) exists in one partition and the other item exists in another partition. Clearly, if both items are

completely held by any one server, it is easy to calculate the average deviation. However, when both items

are held by different servers, a privacy-preserving protocol is needed to compute the average deviation.

This can be done as follows. Assume site Sx holds item a and site Sy holds item b. Now, Sx can compute

sa = ∑i ri,a for all its users and Sy can compute sb = ∑i ri,b. Note that sa− sb = ∆a,b + overcounta−
overcountb, where overcounta = ∑i ri,a, where ri,b does not exist. Similarly, overcountb = ∑i ri,b, where

ri,a does not exist. Since, sa, sb can be computed locally, given a way to compute overcounta, overcountb,

∆a,b can be computed in a privacy-preserving fashion.

We now show how to compute overcounta, overcountb. Essentially, this can be done using a se-

cure scalar product protocol. Basically, Sx forms the vector ~xa, (xai = ri,a, if ri,a exists, otherwise 0).

Correspondingly Sy forms the boolean vector ~ya, (yai = 1, if ri,b does not exist, otherwise 0). Now,

overcounta = ~xa · ~ya. This can be seen as follows – the crucial part is the correct formulation of the

boolean vector. Note that the boolean vector is essentially the inverse of the existence vector for item b.

Thus, any rating of a without a corresponding rating of b will of necessity be now added in to the scalar

product. This is exactly overcounta.

Similarly, Sx creates the boolean vector ~xb, (xbi = 1, if ri,a does not exist, otherwise 0), while Sy

forms the vector ~yb, (ybi = ri,b, if ri,b exists, otherwise 0). Now, overcountb = ~xb · ~yb. The reasoning is

exactly as before – any rating of b without a corresponding rating of a will now be added into the scalar

product.

We can easily use the additively homomorphic cryptosystem to do the scalar product. Basically, Sx

can encrypt ~xa and send it to Sy who can multiply the correct encryptions together to get the encrypted

form of overcounta. Similarly, Sy can encrypt ~yb and send it to Sx who can multiply the correct encryp-

tions together to get the encrypted form of overcountb. Deriving φa,b is similarly easy – both Sx and Sy

simply encode the existence vectors for items a and b respectively. The scalar product of these two vec-

tors is φa,b. Note that typically, the secure scalar product is computed in split fashion. i.e., for overcounta
the two sites get ox and oy respectively such that ox + oy = overcounta. This is to ensure that the scalar

product itself does not directly reveal any information. This works well for us since, when computing

∆a,b both sites can locally sum up their shares and finally sum up the whole in encrypted form. For the

sake of simplicity, in the algorithm, we just note that the scalar products are computed securely. The

overall matrix aggregation process is described in algorithm 4.3.

4.2.1 Matrix update

As earlier, any changes in individual ratings will change the individual pairwise deviations (and also

cardinalities if new users are added or old users are removed6). The addition of new users is easy to

handle. We simply need to carry out the prior aggregration process only for the added new users – these

can then be added in encrypted form to the existing ∆a,b and φa,b. Similarly, for deleted users, we can

carry out the prior aggregation process only for the deleted users and then subtract those from the existing

∆a,b and φa,b. The case for updated users is a little more complicated. However, a simple solution is to

6Note that an user can only be added or deleted by all of the sites together to maintain perfect vertical partitions. We also

leave the case of addition or deletion of items to future work.

10

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Algorithm 4.3 Initial matrix aggregation in the vertical partitioning scheme.

1: {As before note that only upper triangulars of the deviation and relative occurence matrix needs to be

computed as the lower triangulars can be easily deduced from the upper ones. The leading diagonal

is irrelevant.}
2: for each cell (a,b) in the upper triangular matrix do

3: if both item a and item b are held by the same party Sk then

4: Sk computes ∆a,b and φa,b

5: else

6: Assume site Sx owns item a while site Sy owns item b

7: Sx computes sa = ∑i ri,a

8: Sy computes sb = ∑i ri,b

9: Sx creates the vector ~xa, (xai = ri,a, if ri,a exists, otherwise 0)

10: Sx creates the boolean vector ~xb, (xbi = 1, if ri,a does not exist, otherwise 0)

11: Sy creates the vector ~yb, (ybi = ri,b, if ri,b exists, otherwise 0)

12: Sy creates the boolean vector ~ya, (yai = 1, if ri,b does not exist, otherwise 0)

13: Sx and Sy securely compute overcounta = ~xa · ~ya

14: Sx and Sy securely compute overcountb = ~xb · ~yb

15: ∆a,b = sa− sb−overcounta +overcountb
16: Sx creates the boolean vector ~va, (vai = 1, if ri,a exists, otherwise 0)

17: Sy creates the boolean vector ~vb, (vbi = 1, if ri,b exists, otherwise 0)

18: Sx and Sy securely compute φa,b = ~va · ~vb

19: end if

20: end for

treat an update as a deletion of the old user and addition of a new user with the updated values. Now, the

prior process can be used to perform the updates. This update process is described in algorithm 4.4.

Algorithm 4.4 Matrix update in the vertical partitioning scheme. Note that the update scheme does not

mention the process of updating φ but it is similar to that of updating ∆.

1: for each cell (a,b) in the upper triangular matrix do

2: if new users are added then

3: Compute NDa,b = ∆a,b over only the new users using Algorithm 4.3

4: Compute ∆′a,b = ∆a,b +NDa,b

5: else if some users are deleted then

6: Compute NDa,b = ∆a,b over only the deleted users using Algorithm 4.3

7: Compute ∆′a,b = ∆a,b−NDa,b

8: else

9: Compute NDOa,b = ∆a,b over only the modified users (using original values) using Algo-

rithm 4.3

10: Compute NDNa,b = ∆a,b over only the modified users (using new values) using Algorithm 4.3

11: Compute ∆′a,b = ∆a,b−NDOa,b +NDNa,b

12: end if

13: end for

14: {Note that the process for computing φ ′ from φ is exactly the same as above.}

Note that, for the sake of simplicity, the derivation of the ∆ matrix is described in plaintext form.

However, if step 15 of algorithm 4.3, and steps 4, 7, and 11 of algorithm 4.4 is carried out in encrypted

11

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

form, we can derive the matrix in encrypted form.

4.3 Arbitrary Partition

Arbitrarily partitioned data is more complex to handle. Essentially, the computation of each element

of the deviation matrix and the cardinality matrix must be done in a fully distributed manner. Since the

computation of each element is in effect independent, we can consider each in isolation. The computation

required can actually be visualized as a combination of both the processing of horizontally partitioned

data and the processing of vertically partitioned data. Consider a general element in the deviation matrix

∆i, j and the corresponding element φi, j. Now, each site Sx owns some number of users (potentially 0)

for whom it owns both item i and item j. Sx can compute the local deviation matrices ∆Sx

i, j and φSx

i, j

for those users. Every pair of sites Sx and Sy together own some number of users (potentially 0) for

whom one site owns item i while the other owns item j. Now, the protocol for vertical partitioning

(Algorithm 4.3) can be used to compute ∆
Sx,y

i, j and φ
Sx,y

i, j for those users, where Sx owns item i and Sy

owns item j. Since every user either has both item i and j owned by one site or by two separate sites,

each user is uniquely counted in the above computation. Therefore, ∆i, j = ∑x ∆Sx

i, j +∑x,y ∆
Sx,y

i, j . Similarly,

φi, j = ∑x φSx

i, j +∑x,y φ
Sx,y

i, j The detailed procedure is given in Algorithm 4.5.

Algorithm 4.5 Initial matrix aggregation in the arbitrary partitioning scheme.

1: for all items i and j, i 6= j do

2: {Compute ∆i, j and φi, j}
3: for x← 0 . . .k−1 do

4: Site Sx calculates the local deviation matrix ∆Sx

i, j and corresponding cardinality matrix φSx

i, j for

all users that it owns both items i and j

5: end for

6: for x,y ∈ 0 . . .k−1, x 6= y do

7: Site Sx and Sy use Algorithm 4.3 to compute the deviation matrix ∆
Sx,y

i, j and corresponding

cardinality matrix φ
Sx,y

i, j for all users for whom Sx owns item i and Sy owns j

8: end for

9: for x← 0 . . .k−1 do

10: At Site Sx: Compute partial total ptdeltax← ∆Sx

i, j +(∀y,∆
Sx,y

i, j)

11: At Site Sx: Compute partial total pt phix← φSx

i, j +(∀y,φ
Sx,y

i, j)
12: end for

13: All sites together go through a k-cycle to compute ∆i, j← ∑x ptdeltax and φi, j← ∑x pt phix
14: end for

Note that in the above algorithm, when each pair of sites uses the vertical partitioning algorithm to

compute the pair element, it is split between them, as earlier – but this works fine, since they can all be

added up in encrypted form to get the correct final values.

4.3.1 Matrix update

Again as earlier, any changes in individual ratings will change the individual pairwise deviations (and

also cardinalities if new users are added or old users are removed7). The addition of new users is easy

to handle. We simply need to carry out the prior aggregration process only for the added new users –

7Note that, as earlier, when a user’s ratings are vertically partitioned, the user can only be added or deleted by all of the

sites together to maintain the vertical partition. We again leave the case of addition or deletion of items to future work.

12

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

these can then be added in encrypted form to the existing ∆a,b and φa,b. Similarly, for deleted users, we

can carry out the prior aggregation process only for the deleted users and then subtract those from the

existing ∆a,b and φa,b. The case for updated users is more complicated. However, the same prior solution

works - simply treat the update as a set of deletions and additions. Now, the prior process can be used to

perform the updates. This update process is described in algorithm 4.6.

Algorithm 4.6 Matrix update in the arbitrary partitioning scheme. Note that the update scheme does not

mention the process of updating φ but it is similar to that of updating ∆.

1: for each cell (a,b) in the upper triangular matrix do

2: if users are added then

3: Compute NDa,b = ∆a,b over only the new users using Algorithm 4.5

4: Compute ∆′a,b = ∆a,b +NDa,b

5: else if users are deleted then

6: Compute NDa,b = ∆a,b over only the deleted users using Algorithm 4.5

7: Compute ∆′a,b = ∆a,b−NDa,b

8: else

9: {Values are updated}
10: Compute NDOa,b = ∆a,b over only the modified users (using original values) using Algo-

rithm 4.5

11: Compute NDNa,b = ∆a,b over only the modified users (using new values) using Algorithm 4.5

12: Compute ∆′a,b = ∆a,b−NDOa,b +NDNa,b

13: end if

14: end for

15: {Note that the process for computing φ ′ from φ is exactly the same as above.}

5 Implementation and evaluation

We first analyse the computation and communication complexity of our algorithms, then look at the

security provided through our scheme, and finally present a performance evaluation of the cryptographic

primitives.

5.1 Computation and Communication Complexity

In the following, note that, as defined in Definition 3, m represents the global number of users and n

represents the global number of items.

5.1.1 Horizontal partition

Considering the case of horizontal partitioning, the cost of matrix aggregation in Algorithm 4.1 is signif-

icant in comparison with cost of computing the local deviation matrix and cardinality matrix. First, every

site needs to encrypt its own deviation and cardinality matrix. Given that only the upper triangulars are

computed, this gives ∑n−1
i=0 i = n(n−1)/2 encryptions for each matrix at each site. With k sites, there are

a total of kn(n−1)/2 = O(kn2) encryptions for each matrix. Each site, excepting the first one, also needs

to homomorphically add its own matrix to the running aggregate. Thus O(kn2) multiplications are also

required. Finally, the cardinality matrix is decrypted (unless we are using secure sum), giving n(n−1)/2)
decryptions. Since the cost of the encryptions and decryptions dominate, the overall computation cost is

O(kn2). Now, let us consider the communication cost. If we assume that each matrix is forwarded in a

13

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

single message, there are a k messages in the first round (to aggregate), and then another k messages to

forward, thus giving a total of 2k messages. Finally, for the cardinality matrix, the decryptions require

another k messages. Since the upper triangular is transmitted in each message, giving a total of O(kn2)
bits of communication. For updating the matrices (Algorithm 4.2), Si forwards the updated element(s)

of the deviation matrix and/or the cardinality matrix in a k cycle. Since the updated element in each ma-

trix is simply forwarded as an encrypted message, there is no further cost of encryption in the subsequent

sites apart from the first site Si. If the number of items updated is η then the number of encryptions will

be O(η2). The number of messages forwarded is now k (because of one cycle), also requiring O(kη2)
bits of communication. We will still have to decrypt the entire cardinality matrix, hence another O(kn2)
bits of communication are involved.

5.1.2 Vertical partition

Now, consider the vertical partitioning case. This takes significantly larger computation and communica-

tion effort. In algorithm 4.3, for every pair of items (a,b) that are held by two different sites, two secure

scalar products need to be computed to get the deviation for that cell, while one secure scalar product

needs to be computed to get the cardinality. Each scalar product requires m encryptions and m multi-

plications. Therefore the total cost is O(m). Since there are n(n− 1)/2 cells, even though all cells do

not require secure operations, overall the computation complexity is O(mn2). Since, typically, m >> k,

this cost is far larger than the horizontally partitioned data case. Each scalar product requires two rounds

of communication, and O(m) bits. Therefore, the overall communication cost is O(n2) messages, and

O(mn2) bits. In algorithm 4.4, the process is exactly the same as earlier, but only carried out over the

changed users. Assuming the number of changed users is given by m′, the computation cost is O(m′n2),
and the communication cost is O(n2) messages and O(m′n2) bits of communication.

5.1.3 Arbitrary partition

When data is arbitrarily partitioned, the worst case occurs when the data is completely fragmented be-

tween all of the sites. Now, like vertical partitioning, for every pair of items (a,b), the vertical partitioning

algorithm needs to be invoked for every pair of sites co-owning some users for those pair of items, and

then the partial totals are all summed up. Therefore, in the worst case, for every pair of items (a,b),
two secure scalar products need to be computed by every pair of sites collecting that data for some set

of users to get the deviation for that cell, while one secure scalar product needs to be computed to get

the cardinality. However, unlike vertical partitioning, the size of the scalar product changes based on the

number of users for which the sites co-own the item ratings. Infact, since the global number of users

is fixed (m), in total, the same number of encryptions and multiplications are carried out. The added

computation complexity of adding the partial totals is negligible. Therefore, the overall complexity in

the worst case is still O(mn2). Similarly, the overall communication cost is O(n2) messages, and O(mn2)
bits. As earlier, the matrix update process is exactly the same as earlier, but only carried out over the

changed users. Assuming the number of changed users is given by m′, the computation cost of matrix

update is O(m′n2), and the communication cost is O(n2) messages and O(m′n2) bits of communication.

5.2 Security Analysis

We now briefly analyse the security provided by our scheme. Essentially, the security of our algo-

rithms is dependent on the security of the underlying primitives. Since both the deviation matrix and the

cardinality matrix are kept in encrypted form, their confidentiality is preserved as long as the underlying

encryption is secure. Furthermore, consider Algorithm 4.1: since all matrices are exchanged in encrypted

14

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

form, where the underlying cryptosystem is a threshold cryptosystem, nothing is leaked unless all parties

collude. The same is true of the matrix update process for horizontally partioned data. In the vertical

partitioning case, Algorithm 4.3 users the secure scalar product as the underlying primitive. Since this is

known to be secure and only random shares of the final result are exchanged, the entire procedure can

also be shown to be secure (using the Composition theorem). This is also true of the update process.

Finally, arbitrary partitioning requires usage of Algorithm 4.3 as well as secure sum. Since both can be

shown to be secure, the entire process can again be shown to be secure under the framework of secure

multiparty computation. Again, this is also true of the updating process.

5.3 Cryptographic primitives of the Paillier cryptosystem

In the workshop version of this paper, we showed the performance results of cryptographic primitives

for which we had implemented the Paillier cryptosystem with homomorphic addition and multiplication

functions. The cryptographic primitives of our implementation had been tested on a hardware consisting

of a 2.53 GHz Intel Core i5 processor with 8GB DDR3 (1.07GHz bus speed) RAM running 64-bit Mac

OS X 10.6.7 and Java 1.6.0 22 64-bit HotSpot Server VM8. The results are shown in table 5.19. The

results have been generated taking averages over 943 iterations (which happens to be the number of

users in the MovieLens 100K dataset).

Table 5.1: Comparison of a Java implementation of Paillier cryptosystem with different bit lengths for

the public key (i.e. modulus n). Plaintext is random and is in {1,2,3,4,5} and integer multiplicand is

random and is in {0, . . . ,999}with about 80% of them being zero. Note that the bit length of the plaintext

does not have much effect on encryption time due to the optimisation c = (1+mn) rn mod n2.

Paillier cryptosystem 512-bits 1024-bits 2048-bits

Average encryption time (ms) 2.656 17.262 124.544

Average decryption time (ms) 2.719 17.127 123.703

Average homomorphic addition time (ms) 0.008 0.027 0.099

Average homomorphic multiplication time (ms) 0.013 0.039 0.132

5.4 Single partition, single machine implementation

In this paper, we developed an optimised single partition, single machine implementation. Despite being

a single machine implementation, we simulated a client server model and also used a Java implementa-

tion10 threshold version of the Damgärd-Jurik cryptosystem. Therefore, for the same bit lengths as those

shown in table 5.1, the decryption performance was slower with the increase of the number of decrypting

server entities.

Figure 5.1 shows the overview of our implementation. Note that the pre-computation and prediction

stages are separated. Pre-computation is done by the CF server while the query server handles the

prediction. Both of these servers are multi-threaded. Communications between the servers and the client

happen over TCP sockets, and data is transferred through serialized TCP streams.

One of the fundamental aspects for achieving high-efficiency pre-computation as well as prediction

is the storage of the three matrices: (1) the user-item ratings matrix, (2) the item-item deviation matrix,

8Arbitrary precision integers are represented using the java.math.BigInteger class.
9For better accuracy, profiling has been done using ThreadMXBean::getCurrentThreadUserTime() method instead of

the de-facto System.nanoTime().
10University of Texas (Dallas) paillierp library.

15

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

User

Query server

Client
on behalf of

user

CF server

In-memory

matrices

Queries a
prediction

Adds rating
data

Figure 5.1: The overview of the implementation.

and (3) the item-item cardinality matrix. Whether the data stored in those matrices is in plaintext or in

ciphertext, the choice of an efficient data structure holds the key to performance. In order to choose a

data structure, we ought to remember that there is significant level of sparseness in the stored data. Even

though the deviation and cardinality matrices are not as sparse as the user-item ratings matrix, recall that

only the upper triangulars of the deviation and cardinality matrices are stored.

As of now, we considered in-memory storage of those matrices. In future, we will consider stream-

based (e.g. disk file, TCP socket stream) and database storage options later. With in-memory storage, the

sparseness requirement immediately implies that a 2-dimensional array (e.g. long[][]) is an unsuitable

storage data structure. While the 2-D array provides constant time, i.e. O(1) lookup performance, it is

wasteful in storage space. In addition, resizing it is inefficient. Even if ArrayList implementations pro-

vide O(1) lookup performance, the addition operation time complexity is O(n). In our implementation,

the pre-computation stage requires several concurrent read/write access to the matrices, ArrayLists are

not suitable. A Trie data structure11 is not part of the standard Java API, but it is also not suitable in our

context as the keys used to store the data in the matrices are simply integer-based indexes of matrix cell

positions.

Assuming access to a matrix by either row-major order or column-major order but not both, a 2-

D matrix can be represented as a Map<K1, Map<K2, V>>. Java’s TreeMap implementation provides

O(log n) lookup and storage performance while Hashtable and HashMap both provide constant time

lookup and storage. Having tested Oracle (Sun) JVM’s HashMap and Hashtable implementations,

we found that HashMap is faster although there is no theoretical basis supporting this view and may

be purely JVM implementation specific. Both Hashtable and HashMap are very similar except that

HashMap allows null values for keys and objects, which is irrelevant in our context. HashMap iterator

is fail-safe, which means changes made to the map get reflected in its iterator.

Having chosen an efficient data structure, i.e. HashMap, we looked at the data types for K1, K2 and

V because that affects performance too. Both K1 and K2 are integers (perhaps long) while V could

contain arbitrary precision integers for storage of cipher texts. Realistically, the value of the keys is

well expressed by Java’s primitive 32-bit int with a positive range of [0 (231− 1)]. This is enough

for indexing rows and columns: a (231−1) by (231−1) square matrix is extremely large! There is also

another advantage of a HashMap<Integer,V> because Integer provides “a hash code value for this

object, equal to the primitive int value represented by this Integer object”12, which is faster to compute

11See: http://en.wikipedia.org/wiki/Trie.
12See: http://download.oracle.com/javase/6/docs/api/java/lang/Integer.html.

16

http://en.wikipedia.org/wiki/Trie
http://download.oracle.com/javase/6/docs/api/java/lang/Integer.html

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

than that for a Long, i.e. “(int)(this.longValue()^(this.longValue()>>>32))”13.

When storing user-item ratings, we used Long in conformance with the range of rating values in the

MovieLens dataset, for example. Note that we can use Double to work with ratings but that will require

our homomorphic cryptosystem to handle double precision floating point numbers. It is possible but

not necessary for the current proof-of-concept. Ciphertexts are represented using Java’s BigInteger

that allows storing arbitrary precision integers. Since the deviation matrix stores encrypted deviations

while the cardinality matrix stores plaintext cardinalities (expressed as Long), we avoid the overheads of

having two matrices by combining the cardinality and deviation matrix into one and representing the V

as a deviation-cardinality tuple.

The semantics of an “empty” deviation-cardinality tuple must be understood in order to ensure that

the deviation-cardinality matrix allows sparseness by not storing empty tuples. Since the deviation value

of zero (precisely, encrypted zero) does not indicate an absence of deviation, “emptiness” is determined

by the cardinality value of zero. There is also another point that aids the sparse nature of the matrix –

the storage of the upper triangular of the matrix only, discarding the lower triangular and the leading

diagonal. While this behaviour is controllable through the matrix access methods, the tuple itself in

our implementation enables access to the not-stored lower triangular by inverting the stored value in the

upper triangular. Note that the cardinality is not inverted but the deviation (∆) is, i.e. ∆i, j = −∆ j,i. This

is achieved through a homomorphic multiplication, i.e. E (−∆i, j) = E (∆i, j(−1)) = E (∆i, j)
−1 = E (∆ j,i).

For the sake of concurrency, all map-based matrix representations are derived from ConcurrentMap

and ConcurrentHashMap.

5.4.1 Multi-threaded pre-computation

In the weighted Slope One predictor, the task of pre-computation of the deviations and cardinalities

between pairs of items can be split in parallel across the different users. This means, the deviations for

item pairs can be calculated for one user, independently from another user. This allows us to implement

the pre-computation as a multi-threaded operation, which is a performance improvement over sequential

pre-computation. However, it is important to note that the performance gain achieved through multi-

threading can be offset by too many threads that can lead to resource starvation over the shared resources

(e.g. the matrices storing user-item ratings and deviation-cardinality tuples). For this reason, we use a

fixed pool of threads equal to the number of logical processors visible to the JVM. We have tested that

using a cached thread pool, i.e. Executors.newCachedThreadPool(), for pre-computation leads to

shared resource starvation when the number of users is large because too many threads (one for each

user) get started and they all try to access the same shared matrices.

Since we start the pre-computation in a multi-threaded fashion, we will still be able to predict

while pre-computation continues. Predicted values will eventually converge to stable values as the pre-

computation finishes off. However, the ability to predict during pre-computation reduces turn-around

time for prediction queries. Users can still get some predictions without having to wait for the entire

pre-computation to finish, or wait for any subsequent updates. However, depending on how long the

pre-computation takes, it may not always be possible to predict for a user at a particular time until a

substantial chunk of pre-computation completes. In essence, if a query comes in when none of the pre-

computation threads (one for each user) has finished then prediction may not be possible, or most likely

to be error prone.

The pre-computation performance can be improved with multi-core or multi-processor CPU archi-

tecture. Since we are using fixed pool of threads, it is important to note that the pre-computation does

not have a large memory footprint, which will mostly be dominated by the storage size of ciphertexts.

13See: http://download.oracle.com/javase/6/docs/api/java/lang/Long.html.

17

http://download.oracle.com/javase/6/docs/api/java/lang/Long.html

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Threads are re-used from the fixed pool of threads. If a thread exits with an exception and the thread ob-

ject is destroyed then a new thread gets created to replace the destroyed thread in the pool. Therefore, for

the entire pre-computation, memory leaks do not happen with unexpected thread failures. All Runnable

tasks are submitted at the start of pre-computation and they remain in an unbounded queue, which is

serviced by the fixed number of threads. Thus, the total amount of memory required to run those tasks is

claimed at the start of pre-computation.

5.4.2 Multi-threaded client-server architecture

The prediction of rating is achieved over a client-server architecture, where each site starts a multi-

threaded server to which clients connect to request predictions. In the single partition, single site model,

there is only one such site and the entire rating dataset is available as a single partition to the site. The site

simulates shared decryptions of the threshold cryptosystem itself. At start, the site generates threshold

keys for the homomorphic cryptosystem (or it may read from a pre-generated file) and reads in the rating

dataset, e.g. the MovieLens 100K dataset. Then it starts the multi-threaded pre-computation as well

as spawns out threads to listen on a server socket bound to a port on the IP addresses assigned to the

network adapters of the machine. From this point, the client can connect to the server for prediction

while pre-computation continues in the background.

The client-server protocol is based on character streams used to serialize objects. For each client

connection, the server maintains an input (i.e. from the client) and an output (i.e. to the client) mes-

sage queue. Objects in the input queue are enqueued by constantly reading objects from the socket

input stream (using ObjectInputStream); while objects from the output queue are dequeued into the

socket output stream (using ObjectOutputStream). The queue enqueue and dequeue operations are

also multi-threaded so that independent threads can poll the input stream and the output message queue

for deserialization and serialization operations respectively.

Prediction vs. pre-computation It is important to note that encrypting all deviations during pre-

computation is essentially a single-machine simulation of a horizontally partitioned dataset with each

user in one partition. In reality, there is no need to encrypt deviations during pre-computation in any one

partition. The encryption is only required when the deviation data is shared with other partitions in other

sites. The approximate cost of encrypted pre-computation is shown in table 5.2.

On the other hand, if we use unencrypted deviations and encrypt them only at the time of answering

the prediction query then the pre-computation phase is very fast but each prediction task takes signif-

icantly longer, e.g. up to about 30 times more! The time taken will depend on how many items are

being compared because that will determine the number of encryptions and homomorphic multiplica-

tions. However, in a realistic scenario, the encryptions will not need to be performed for every query.

We can use on-demand encryptions. In that case, when most of the deviation matrix has been encrypted

from several predictions, the prediction timing will eventually drop, helping us to achieve a balance of

performance between pre-computation and prediction. Or there could be an additional step of encrypt-

ing the entire deviation matrix once the pre-computation is done: that helps speedup by eliminating

homomorphic addition that is encountered while pre-computing with encrypted deviations.

6 Conclusion and future work

In this paper, we have proposed an efficient privacy-preserving solution for the problem of collaborative

filtering over distributed data. Our solution is based on the weighted Slope One predictor from Lemire

and MacLachlan [19] and uses homomorphic encryption to carry out the necessary computations. We

18

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

Table 5.2: Comparison of pre-computation and prediction times on a 2.53GHz Intel Core 2 Duo proces-

sor architecture with 8GB RAM running Mac OS X 10.6.7 and 64-bit Java 1.6 with a fixed thread pool

executor service with a pool size equal to the number of logical CPU cores available to the JVM.

Keysa Mean pre-computationb Total pre-computationc Prediction

512 bits 30s 2h 500ms

1024 bits 90s 6h 1.5s

2048 bits 270s 18h 4.5s

aThis refers to modulus bit length of the cryptosystem.
bThis is the mean of the pre-computation time taken for each user and all item pairs.
cThis is an approximate linear estimate. Note that the total is not equal to the mean time for pre-computation multiplied by

the number of users because the pre-computation tasks run in parallel.

have also presented test results of our CF scheme on a single machine, single dataset partition. Currently,

we assume a PKI infrastructure, and complete collaborative environment. In the future, we are planning

to reduce these trust assumptions, by leveraging P2P based topology for the participating sites, and

reducing the need for cryptographic operations. One way to do this is to explore the possibility of

aggregating partial deviation and cardinality matrix for a subgroup at a higher level aggregator using

secure sum based techniques and then propagate it upwards. We will explore this in the future.

References

[1] C. C. Aggarwal and P. S. Yu. A General Survey of Privacy-Preserving Data Mining Models and Algorithms,

chapter 2, pages 11–52. Springer, 2008.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining algo-

rithms. In Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS’01), Santa Barbara, California, USA, pages 247–255. ACM, 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the ACM SIGMOD Conf. on Man-

agement of Data, Dallas, Texas, USA, pages 439–450. ACM, 2000.

[4] A. Basu, H. Kikuchi, and J. Vaidya. Privacy-preserving weighted Slope One predictor for Item-based Collab-

orative Filtering. In Proc. of the Intl. workshop on Trust and Privacy in Distributed Information Processing

(TP-DIS’11), Copenhagen, Denmark, July 2011.

[5] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Privacy-enhanced collaborative filtering. In Proc. of the

User Modeling Workshop on Privacy-Enhanced Personalization (PEP’05), Edingburgh, UK, 2005.

[6] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing privacy and preserving accuracy of a distributed

collaborative filtering. In Proc. of the ACM Conf. on Recommender Systems (RecSys’07), Minneapolis,

Minnesota, USA, pages 9–16. ACM, 2007.

[7] J. Canny. Collaborative filtering with privacy. In Proc. of the 2002 IEEE Symposium on Security and Privacy,

Los Alamitos, California, USA, pages 45–57. IEEE Computer Society, 2002.

[8] J. Canny. Collaborative filtering with privacy via factor analysis. In Proc. of the 25th Annual Intl. ACM SIGIR

Conf. on Research and Development in Information Retrieval (SIGIR’02), Tampere, Finland, pages 238–245.

ACM, 2002.

[9] R. Cissée and S. Albayrak. An agent-based approach for privacy-preserving recommender systems. In Proc.

of the 6th Intl. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS’07), Honolulu, Hawaii,

USA, pages 182:1–182:8. ACM, 2007.

[10] C. Clifton, M. Kantarcioglu, X. Lin, J. Vaidya, and M. Zhu. Tools for Privacy Preserving Distributed Data

Mining. SIGKDD Explorations, 4(2):28–34, January 2003.

19

Privacy-preserving Collaborative Filtering Anirban Basu et. al.

[11] I. Damgärd and M. Jurik. In Proc. 4th Intl. Workshop on Public Key Cryptography (PKC’01), Cheju Island,

Korea. LNCS, pages 119–136, February.

[12] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of association rules. In

Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (KDD’02), Edmonton,

Alberta, Canada, pages 217–228. ACM, 2002.

[13] O. Goldreich. The Foundations of Cryptography, volume 2, chapter General Cryptographic Protocols, pages

599–764. Cambridge University Press, Cambridge, UK, 2004.

[14] S. Gong. Privacy-preserving collaborative filtering based on randomized perturbation techniques and secure

multiparty computation. International Journal of Advancements in Computing Technology (IJACT), 3(4):89–

99, 2011.

[15] S. Han, W. K. Ng, and P. S. Yu. Privacy-Preserving Singular Value Decomposition. In Proc. of the 25th IEEE

Intl. Conf. on Data Engineering (ICDE’09), Shanghai, China, pages 1267–1270. IEEE, 2009.

[16] Z. Huang, W. Du, and B. Chen. Deriving private information from randomized data. In Proc. of the ACM

Intl. Conf. on Management of Data (SIGMOD’05), Baltimore, Maryland, USA, pages 37–48.

[17] C. Kaleli and H. Polat. P2P collaborative filtering with privacy. Turkish Journal of Electric Electrical

Engineering and Computer Sciences, 8(1):101–116, 2010.

[18] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties of random data

perturbation techniques. In Proc. of the 3rd IEEE Intl. Conf. on Data Mining (ICDM’03), Melbourne, Florida,

USA. IEEE Computer Society, 2003.

[19] D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering. In Proc.

of the SIAM Data Mining (SDM’05), Newport Beach, California, USA, 2005.

[20] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proc. of the Advances in Cryptology

(CRYPTO’00). LNCS, volume 1880, pages 20–24. Springer-Verlag, August 2000.

[21] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3):177–206, 2002.

[22] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity: Privacy beyond k-

anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), March 2007.

[23] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proc. of the Advances

in Cryptology (EUROCRYPT’99), Prague, Czech Republic. LNCS, volume 1592, pages 223–238. Springer,

1999.

[24] H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized perturbation techniques. In

Proc. of the 3rd IEEE Intl. Conf. on Data Mining (ICDM’03), Melbourne, Florida, USA, pages 625–628.

IEEE, 2003.

[25] H. Polat and W. Du. Privacy-preserving collaborative filtering on vertically partitioned data. In Proc. of the

9th European Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD’05), Porto,

Portugal. LNCS, volume 3271, pages 651–658. Springer, 2005.

[26] H. Polat and W. Du. Privacy-preserving top-n recommendation on horizontally partitioned data. In Proc. of

the 2005 IEEE/WIC/ACM Intl. Conf. on Web Intelligence (WI’05), France, pages 725–731. IEEE, 2005.

[27] H. Polat and W. Du. SVD-based collaborative filtering with privacy. In Proc. of the 20th ACM Symposium

on Applied Computing (SAC’05), Santa Fe, New Mexico, USA. ACM Press, 2005.

[28] H. Polat and W. Du. Achieving private recommendations using randomized response techniques. In Proc. of

the 10th Asia-Pacific Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD’06), Singapore.

LNCS, volume 3918, pages 637–646. Springer, 2006.

[29] S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In Proc. of the 28th Intl.

Conf. on Very Large Databases (VLDB’02), Hong Kong SAR, China, pages 682–693, 2002.

[30] J. B. Schafer, J. Konstan, and J. Riedi. Recommender systems in e-commerce. In Proc. of the 1st ACM Conf.

on Electronic Commerce (EC’99), Denver, Colorado, USA, pages 158–166. ACM Press, 1999.

[31] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty Fuzziness

Knowledge-Based Systems, 10(5):557–570, October 2002.

[32] A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE Symposium on Foundations of

Computer Science, Toronto, Canada, pages 162–167. IEEE Computer Society, 1986.

20

	Introduction
	Our contribution

	Background and Preliminaries
	The weighted Slope One predictor
	Related work
	An additively homomorphic public-key cryptosystem – Paillier
	Generalised threshold variant – the Damgärd-Jurik cryptosystem

	Problem statement
	Horizontal Partitioning of Data
	Vertical Partitioning of Data
	Arbitrary Partitioning of Data

	Privacy-preserving Slope One
	Horizontal Partition
	Initial matrix aggregation
	Matrix update

	Vertical Partition
	Matrix update

	Arbitrary Partition
	Matrix update

	Implementation and evaluation
	Computation and Communication Complexity
	Horizontal partition
	Vertical partition
	Arbitrary partition

	Security Analysis
	Cryptographic primitives of the Paillier cryptosystem
	Single partition, single machine implementation
	Multi-threaded pre-computation
	Multi-threaded client-server architecture

	Conclusion and future work

