Google App Enginel 0000000000 OOOOOOOOOO

Anirban Basuf Jaideep Vaidyal

Hiroaki Kikuchif

Theo Dimitrakos§

toooo
108-8619 0 0 OO0 OO 2-3-23 Email: abasu@cs.dm.u-tokai.ac. jp
TRutgers, The State University of New Jersey
1, Washington Park, Newark, New Jersey 07102-1897, USA
Email: jsvaidya@business.rutgers.edu
8Security Futures Practice, Research & Technology, BT
Adastral Park, Martlesham Heath, IP5 3RE, UK
Email: theo.dimitrakos@bt.com

0000 00O00o0o0o00o00000O000o0o0O0o00o0oO0oOO0oDOooo0oO0oO0oO0oooooo
O0000000000000000000000000DB000 SlepeOned00000O0O0O0O0O0BOOO
0000000 Platform-as-a-Service (PaaS) clond 00000000000 Software-as-a-Service (SaaS)
00000000 Google App Engine for Java (GAE/J) 000000000

Practical privacy preserving collaborative filtering on the
Google App Engine

Anirban Basut Jaideep Vaidyal

Hiroaki Kikuchif

Theo Dimitrakos§

tGraduate School of Engineering, Tokai University
2-3-23 Takanawa, Minato-ku, Tokyo 108-8619, Japan
tMSIS Department, Rutgers, The State University of New Jersey
1, Washington Park, Newark, New Jersey 07102-1897, USA
8Security Futures Practice, Research & Technology, BT
Adastral Park, Martlesham Heath, IP5 3RE, UK

Abstract With rating-based collaborative filtering (CF) one can predict the rating that a user will

give to an item, derived from the ratings of other items given by other users.

However, preserving

privacy of rating data from individual users is a significant challenge. Many privacy preserving schemes
have, so far, been proposed, such as our earlier work on extending the well known weighted Slope One
predictor. However, many such theoretically feasible schemes face practical implementation difficulties
on real world public cloud computing platforms. In this paper, we re-visit the generalised problem of
privacy preserving collaborative filtering and demonstrate an approach and a realistic implementation on
the specialised Software-as-a-Service (SaaS) construction Platform-as-a-Service (PaaS) cloud offering —

the Google App Engine for Java (GAE/J).

1 Introduction

Consider a motivating example is as follows: Al-
ice has been to London, Kgbenhavn, Trgndheim,
Napoli, Bangalore, Hong Kong, Tokyo and Kyoto.
She intends to visit Melbourne next and would
like a tourism information provider running on the
cloud to give her a rating prediction for Melbourne
based on her ratings of the cities she has visited
as well as such ratings from the community. She
is completely unaware of (and does not care) who

else has rated various cities in this way apart from
obtaining a reasonable rating for Melbourne. Al-
ice also is unwilling to send the entire rating vector
for her items (i.e. cities) to any third party but is
happy to send some in such a way that they are de-
linked from her identity through some anonymis-
ing mechanism. If Alice is to obtain a rating for
Melbourne, she would prefer confidentiality of the
information and also does not want to reveal her
identity in the prediction query. In future, Alice
may also change her previous ratings on any city.



Thus, we aim to build a privacy preserving col-
laborative filtering scheme on the cloud for any
item such that: 1. a contributing user need not re-
veal his/her entire rating vector to any other party,
2. any individual parts of information revealed by
a user are insufficient to launch an inference based
attack to reveal any additional information, 3. a
trusted third party is not required for either model
construction or for prediction, 4. assume honest
but curious user participation, although we discuss
in this paper what happens if we give up this as-
sumption, and 5. assume insider threats to data
privacy from the cloud infrastructure itself.

To achieve this, in our approach, the user will
use anonymising techniques (e.g. anonymiser net-
work such as Tor, pseudonyms) to de-identify him-
self/herself from his/her ratings sufficiently such
that the complete rating vector for a user cannot
be reconstructed. Thus our security guarantees are
based upon the security guarantees provided by
the underlying anonymiser/mix network, and are
bounded by it.

Contributions

The contributions of this paper are summarised as
follows.

1. Our work is the first, to our knowledge, to
attempt a novel practical implementation of a
privacy preserving weighted Slope One predic-
tor on a real world cloud computing platform.

2. Ours is a novel idea where encryption is used
at the user level, allowing only the target user
to decrypt the result of an encrypted predic-
tion query, and thereby eliminating the re-
quirement of trusted third parties, which were
required in any privacy preserving scheme tak-
ing advantage of threshold decryption.

3. In our earlier work [1], we tackled the privacy
preserving CF problem from a different angle.
Our earlier scheme is applicable to pure hor-
izontal and pure vertical dataset partitions.
The scheme presented in this paper does not
consider dataset partitioning in the cloud be-
cause user’s rating data are not stored in the
cloud at all. Even so, the general assumption
is that each user knows only his or her own
ratings, and does know all of them — similar
to the case of horizontal partitioning of data
outside the cloud. We do include a discussion
on the case of vertical partitioning of data out-
side the cloud.

2 Background

2.1 Slope One collaborative filtering

The Slope One predictors due to Lemire and McLach-
lan [7] are item-based collaborative filtering schemes
that predict the rating a user will give to an item
from a pair-wise deviations of item ratings. The
unweighted scheme estimates a missing rating us-
ing the average deviation of ratings between pairs
of items with respect to their cardinalities. Slope

One CF can be evaluated in two stages: pre-computation

and prediction of ratings. The weighted Slope One
predictor adds more weight to a pair-wise devia-
tion if both items in the pair have been rated by
many users.

In the pre-computation stage, the average devi-
ations of ratings from item a to item b is given as:
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where ¢, is the count of the users who have rated
both items while 6; 4. = 75,4 — 7,5 is the deviation
of the rating of item a from that of item b both
given by user i.

In the prediction stage, the rating for user u and
item z using the weighted Slope One is predicted
as:
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The matrices A and ¢ are called deviation and
cardinality matrices respectively. These matrices
are sparse matrices. We need to store the up-
per triangulars only because the leading diagonal
contains deviations and cardinalities of ratings be-
tween the same items, which is irrelevant. The
lower triangular for the deviation matrix is the
additive inverse of the upper triangular while the
lower triangular of the cardinality matrix is the
same as its upper triangular. These two matri-
ces contain information about item pairs only, so
these do not pose any privacy risk to user’s rating
data. Despite the plaintext deviation and cardi-
nality storage, if the user sends his/her rating vec-
tor to the prediction function then it is a privacy
threat. Therefore, we can use encrypted rating pre-
diction.

2.2 Problem statement

Definition [Privacy-Preserving weighted Slope One
Predictor] Given a set of m users uy, ..., Uy, that



may rate any number of n items i1,...,4i,, build
the weighted Slope One predictor for each item sat-
isfying the following two constraints:

e no submitted rating should be linked back to
any user.

e any user should be able to obtain a prediction
without leaking his/her private rating informa-
tion.

3 Proposed scheme

Akin to the original Slope One CF scheme, our pro-
posed extension also contains a pre-computation
phase and a prediction phase. Pre-computation is
an on-going process as users add, update or delete
pair-wise ratings or deviations of ratings. The over-
all user-interaction diagram of our proposed model
is presented in figure 3.1 showing the addition of
rating data only.
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scheme.

User-interaction diagram of our

3.1 Pre-computation

In the pre-computation phase, the plaintext de-
viation matrix and the plaintext cardinality ma-
trix are computed. In the absence of full rating
vectors from users and consistent user identifica-
tion, the combination of the deviation and the car-
dinality matrices pose no privacy threat to the
users’ private rating data. The collection of the
rating data is done pair-wise and after the user
identity is de-linked in the process through the

~ computes encrypted prediction

use of known techniques, such as anonymising net-
works [8, 2, 5], mixed networks [3, 6, 4], pseudony-
mous group memberships [10], and so on. User
submits a pair of ratings or the corresponding de-
viation to the cloud application at any point in
time. Thus, if the user originally rated n items
then @ pair-wise ratings or deviations should
be submitted. Since the user’s identity (e.g. a
pseudonym or an IP address) can (rather, must)
change between consecutive submissions, the cloud
cannot deterministically link the rating vector to a
particular user.

3.1.1 Case of new ratings

In the pre-computation stage, the average devia-
tions of ratings from item a to item b is given. The
cloud application only maintains a list of items;
their pairwise deviations and cardinalities but no
other user data. The cloud only learns that the two
ratings or their deviation by a particular user (pro-
vided the user identity changes in the consecutive
submission), which is even insufficient to launch
an offline knowledge based inference attack on the
user’s private rating vector. The process of rating
addition is described in algorithm 3.1.

3.1.2 Updates and deletions

Updates or deletions of existing rating data are
possible. For example, say the user has rated item
a and b beforehand. When it comes to updating,
he/she can notify the cloud of the difference be-
tween the new pair-wise rating deviation and the
previous one and flag it to the cloud that it is an
update. The process of rating update is described
in algorithm 3.2.

Similarly, for the delete operation, the additive
inverse of the previous deviation, i.e. —d, is sent
by the user to the cloud signifying a deletion. The

process of rating deletion is described in algorithm 3.3.

3.1.3 What if the user is dishonest?

If the user is dishonest, contrary to our assump-
tion, then it is evident that automated bot-based
addition, updates and deletions can disrupt the
pre-computation stage. Although we leave this for
future work, one possibility is to use CAPTCHA
[9] to require human intervention, and hence slow
down the number of additions, updates and dele-
tions.

3.2 Prediction

In the prediction phase, the user queries the cloud
with an encrypted and complete rating vector. The



Algorithm 3.1 An algorithm for the addition of
new ratings.

Algorithm 3.2 An algorithm for the updates of
existing ratings.

Require: An item pair identified by a and b, rat-
ings rq and 1y, or the deviation . = 14 — 75
has been submitted. Calculate d, if it was
not submitted.

1: Find the deviation A, ; and cardinality ¢g,, in
the in-memory cache; and in the datastore if
not found in cache.

Ensure: While looking for deviations and cardi-
nalities, also look for their inverses, i.e. Ay,
and ¢y, because only the upper triangular is
stored. {If the inverses are retrieved then de-
viation must be inverted before operating on
it.}

if Ay and ¢4 not found then

Aa,b <~ 0 and ¢a,b +— 0.

end if

Update A, b Daptdapand @y — bap+1.

Store A’ b and 1oy up 1D the cache and also in the

datastore.

Ensure: While writing to cache and to datastore,
write to the inverses A} , and d)b if these were
initially retrieved. {If the inverses were re-
trieved then deviation must be inverted before
storing it.}

7: Audit this add operation in the datastore, e.g.
using user’s IP address as the identity. {This
is a typical insider threat in the cloud.}

encryption is carried out at the user’s end with the
user’s public key. The prediction query, thus, also
includes the user’s public key, which is then used by
the cloud to encrypt the necessary elements from
the deviation matrix and to apply homomorphic
multiplication according to the prediction equa-
tion defined in equation 3.1, where D() and &()
are decryption and encryption operations, A , is
the deviation of ratings between item = and item
a; ¢g.q is their relative cardinality and £(ryq) is
an encrypted rating on item a sent by user w, al-
though the identity of the user is irrelevant in this
process. Note that the final decryption is again
performed at the user’s end with the user’s private
key, thereby eliminating the need of any trusted
third party for threshold decryption.
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which is optimised by reducing the number of en-
cryptions as follows:
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Require: An item pair identified by a and b, and
dif f5us.00,

1: Find the deviation A,; in the in-memory
cache; and in the datastore if not found in
cache.

Ensure: While looking for deviations, also look

for its inverse, i.e. Ay, because only the upper

triangular is stored. {If the inverse is retrieved
then deviation must be inverted before operat-
ing on it.}

if A, not found then

print error!

end if

Update A, , < Ay p +dif f5

Store Al » in the cache and also in the datas-

tore.

Ensure: While writing to cache and to datastore,
write to the inverse A’ op if it was initially re-
trieved. {If the inverse was retrieved then de-
viation must be inverted before storing it.}

7: Audit this update operation in the datastore,
e.g. using user’s IP address as the identity.
{This is a typical insider threat in the cloud.}

ab’

Algorithm 3.3 An algorithm for the deletion of
existing ratings.

Require: An item pair identified by a and b, and
—0q.b-

1: Find the deviation A, and cardinality ¢q 4 in
the in-memory cache; and in the datastore if
not found in cache.

Ensure: While looking for deviations and cardi-
nalities, also look for their inverses, i.e. Ay,
and ¢y, because only the upper triangular is
stored. {If the inverses are retrieved then de-
viation must be inverted before operating on
it.}
if A, and ¢qp not found then
print error!
end if
Update A, b Dap— dap and @), , < ¢y —
Store A’ Wb and o » in the cache and also in the
datastore
Ensure: While writing to cache and to datastore,
write to the inverses Ay , and ¢}, , if these were
initially retrieved. {If the inverses were re-
trieved then deviation must be inverted before
storing it.}

7: Audit this deletion operation in the datastore,
e.g. using user’s IP address as the identity.
{This is a typical insider threat in the cloud.}




The steps for the prediction is shown in algo-
rithm 3.4.

Algorithm 3.4 An algorithm for the prediction of

an item.

Require: An item z for which the prediction is
to be made, a vector RE = E(ralasta) of en-
crypted ratings for other items rated by the
user (i.e. each item ala # z) and the public
key pk,, of user u.

1: total cardinality: tc <— 0; total deviation: td <
0; total encrypted weight: tew «+ £(0); total
encrypted deviation: ted < £(0).

2. for j = 1 — length(RE) do

3:  Find the deviation A, ; and cardinality ¢, ;

in the in-memory cache; and in the datastore
if not found in cache.

Ensure:  While looking for deviations and cardi-
nalities, also look for their inverses, i.e. Aj ;
and ¢; ., because only the upper triangular
is stored. {If the inverses are retrieved then
deviation must be inverted before operating

on it.}

4:  if A, ; and ¢, ; found then

5. td < td+ A,y

6: tctc+ ¢z 5.

7: tew + E(tew)(E(rj)?=7). {This step in-
volves a homomorphic addition and a ho-
momorphic multiplication.}

8: end if

9: end for

10: ted + E(tew)(E(td)). {This is a homomorphic

addition.}
11: return ted and tc.

In the scheme described above, there is, in fact,
one privacy leakage in the prediction phase: the
number of items in the user’s original rating vec-
tor. This can be addressed by computing the pre-
diction at the user’s end with the necessary ele-
ments from the deviation and cardinality matrices
obtained from the cloud. The user can mask the
actual rating vector by asking the cloud for an un-
necessary number of extra items.

4 Evaluation

Implementation demo URL: http://evalgaej .appqucté

com/.

Conforming to Google App Engine terminology,
we will call the time taken by the application to re-
spond to the user request as application latency or
simply latency. This latency does not include net-
work latencies encountered between our network

and Google data centres.

4.1 Pre-computation

In the pre-computation stage, there is no crypto-
graphic operation. The application latency is dom-
inated by the time taken to complete a datastore
write operation. Each such datastore write opera-
tion took between 80ms and 150ms. Google App
Engine is designed to scale well. We did perform
bulk addition of pair-wise deviations. The bulk
adding client generated 32 threads to process the
MovieLens 100K! dataset. The figure shows data
of the 14 automatically allocated application in-
stances. Each such instance can handle multiple
requests and are pooled in memory. The QPS col-
umn shows how many queries per second each in-
stance handled at that point while the latency is
the average time taken to complete such requests.

4.2 Prediction

The prediction stage involves one homomorphic en-
cryption as well as several homomorphic multipli-
cations. Therefore, increasing the size of the en-
crypted rating vector typically linearly increased
the time taken to predict. It is not dependent on
the size of the deviation and cardinality matrices.
This is shown in table 4.1. Note that given a 2048-
bit Paillier cryptosystem, the total prediction time
with 10 encrypted ratings as the input vector is
reasonably fast: about 3.5 seconds, while the pre-
diction time improves by about four-fold if we use
a 1024-bit cryptosystem. Sometimes even if the in-
put vector is large, pair-wise ratings between the
queried for item and the items in the input vec-
tor may not exist, which will reduce the prediction
time. Another factor impacting on performance is
the availability of the deviation and cardinality ma-
trix data on the distributed in-memory cache ver-
sus the datastore. In addition, GAE/J instances
may also perform better or worse depending on the
shared resources available on the Google’s cloud
computing clusters.

5 Conclusion and future work

Many existing privacy preserving collaborative fil-
ring schemes pose challenges with practical im-
plementations on the cloud. In this paper, we ex-
tend the well-known weighted Slope One collabora-
tive filtering predictor to propose a novel approach
and a practical implementation on a real world

IMovieLens datasets:

node/73.

http://www.grouplens.org/



Table 4.1: Comparison of typical prediction tim-
ings, based on the optimised equation 3.2.

’ Bit size? \ vector size® \ prediction time ‘

1024 5 410ms
1024 10 825ms
2048 5 1900ms
2048 10 3500ms

“Paillier cryptosystem modulus bit size, i.e. |n|.
bSize of the encrypted rating vector.

SaaS construction PaaS cloud computing platform
— the Google App Engine for Java. In our scheme,
user’s rating data is not stored in the cloud. Our
scheme does not rely on any trusted third party
for threshold decryption by allowing the users to
encrypt and decrypt a prediction query and its re-
sults respectively.

The scheme proposed in this paper relies on the
security guarantees of existing anonymising tech-
niques, such as an anonymiser/mix network. We
also assume that the user is honest. In future work,
we plan to extend our proposed scheme by discard-
ing those assumptions.
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